Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis.
نویسندگان
چکیده
Limbic dysfunction and hypothalamo-pituitary-adrenocortical (HPA) axis dysregulation are key features of affective disorders. The following review summarizes our current understanding of the relationship between limbic structures and control of ACTH and glucocorticoid release, focusing on the hippocampus, medial prefrontal cortex and amygdala. In general, the hippocampus and anterior cingulate/prelimbic cortex inhibit stress-induced HPA activation, whereas the amygdala and perhaps the infralimbic cortex may enhance glucocorticoid secretion. Several characteristics of limbic-HPA interaction are notable: first, in all cases, the role of given limbic structures is both region- and stimulus-specific. Second, limbic sites have minimal direct projections to HPA effector neurons of the paraventricular nucleus (PVN); hippocampal, cortical and amygdalar efferents apparently relay with neurons in the bed nucleus of the stria terminalis, hypothalamus and brainstem to access corticotropin releasing hormone neurons. Third, hippocampal, cortical and amygdalar projection pathways show extensive overlap in regions such as the bed nucleus of the stria terminalis, hypothalamus and perhaps brainstem, implying that limbic information may be integrated at subcortical relay sites prior to accessing the PVN. Fourth, these limbic sites also show divergent projections, with the various structures having distinct subcortical targets. Finally, all regions express both glucocorticoid and mineralocorticoid receptors, allowing for glucocorticoid modulation of limbic signaling patterns. Overall, the influence of the limbic system on the HPA axis is likely the end result of the overall patterning of responses to given stimuli and glucocorticoids, with the magnitude of the secretory response determined with respect to the relative contributions of the various structures.
منابع مشابه
Neurocircuitry of stress integration: anatomical pathways regulating the hypothalamo-pituitary-adrenocortical axis of the rat.
The hypothalamo-pituitary-adrenocortical (HPA) axis is recruited by the organism in response to real or perceived threats to homeostasis ("stress"). Regulation of this neuroendocrine system is accomplished by modulation of secretory tone in hypophysiotrophic neurons of the medial parvocellular paraventricular nucleus. Excitation of these neurons is mediated by several sources: direct (and perha...
متن کاملP146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress
Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...
متن کاملDifferential responses of the hypothalamo-pituitary-adrenocortical axis to acute restraint stress in Hatano high- and low-avoidance rats.
The high- and low-avoidance animal (HAA and LAA respectively) strains of Hatano rats were originally selected and bred from Sprague-Dawley rats for their performance in the shuttle-box task. The present study focused on the activity of the hypothalamo-pituitary-adrenocortical (HPA) axis of HAA and LAA rats in response to restraint stress. The restraint stress induced an elevation in plasma conc...
متن کاملPnm-12: Can Stress Lead to Infertility?
Background: The role that stress plays in infertility remains controversial and despite medical advances a large percentage of infertility remains unexplained. Clinicians and researchers consistently report that infertile women view infertility and its treatment as extremely stressful. Basic science has elucidated the linkages between the hypothalamic-pituitary axis (HPA) and hypothalamic-pitui...
متن کاملNeural control of chronic stress adaptation
Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Progress in neuro-psychopharmacology & biological psychiatry
دوره 29 8 شماره
صفحات -
تاریخ انتشار 2005